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Algorithmic complexity and thermodynamics of sequence-structure relationships in proteins
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The information contained in a protein’s amino acid sequence dictates its three-dimensional structure. In this
situation a frozen or embedded structure, the sequence, contains information that ultimately influences a
thermodynamic entity, the protein structure. The interplay between information and thermodynamics is ex-
plored by considering the algorithmic complexity and Kolmogorov’s universal probability of the sequence and
of the structure. It is shown that the algorithmic complexity of a microstate of a polymer is given by its
configurational entropy. Using this result and a lattice protein model, a quantitative estimate of the information
contained in a protein’s structure is made. This is compared to the information content of the sequence. The
information content of the sequence is approximately 2.5 bits per amino acid, while the content in the structure
is approximately 0.5 bits per amino acid. It is estimated that virtually all the information contained in the
protein structure is shared with the sequence. A deeper connection can be made between the shared information
content and the thermodynamic entropy governing the system. Using Kolmogorov’s universal probability, it is
possible to establish statistical-mechanical relationships for objects without resorting to a probabilistic en-
semble formalism. This allows the thermodynamics of microstates of objects of known configurations to be
determined. Using this formalism, the connection between sequence information and the structural thermody-
namics of a protein can be made. This connection has strong implications for how protein sequences evolve
over evolutionary time and demonstrates that this evolution is constrained by the thermodynamic evolution of
the protein structure.@S1063-651X~97!03510-1#

PACS number~s!: 87.10.1e, 87.15.By, 89.70.1c
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I. INTRODUCTION

The fundamental premise of the protein folding proble
is that the information contained in the protein seque
specifies the three-dimensional structure of the protein@1#.
Although this premise is now supported by a wealth of e
perimental data, there have been few efforts to quantify
information content of the protein sequence~cf. @2#!. Ideally,
one could quantify the information content of the prote
structure as well and determine the amount of informat
shared between sequence and structure. This shared o
tual information is an implicit component of programs i
volved with protein structure prediction and protein desig
It is also of interest to ask how these information parame
evolve over evolutionary time. Is this evolution random,
suggested by Kimura’s neutral theory of evolution@3#, or
does it follow specific dynamical laws? To approach the
questions, the information content of both the protein
quence and the protein structure must be determined.

The information content of the sequence can be obtai
by calculating the Shannon information entropy. The Sh
non information entropy of the amino acid sequence reve
the smallest number of binary digits~bits! per amino acid
that are needed for the most efficient coding of the seque
This number can be estimated from the probability distrib
tion of amino acids in a protein. Previous work in this lab
ratory suggests that this number is approximately 2–2.5
per amino acid@4#. This is a surprisingly small number con
sidering that a uniform distribution of 20 amino acids wou
require 4.32 bits per amino acid (ln2 20). This low informa-

*FAX: ~303! 871-2254. Electronic address: gdewey@du.ed
561063-651X/97/56~4!/4545~8!/$10.00
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tion content indicates that sequences are not random and
some degree of correlation must exist within them. This n
randomness is due in part to structural and thermodyna
constraints of the folded protein.

Recently, it was suggested that the information conten
a protein’s structure could be quantified using an informat
theoretical parameter known as the algorithmic complex
@5#. In previous work, it was shown that the algorithm
complexity of a protein is equal to its configurational the
modynamic entropy. The algorithmic complexity of an o
ject is broadly defined as the length in bits of the short
description for that object~cf. @6#!. Alternatively, it is the
length of the shortest program required to obtain the outp
Kolmogorov devised this definition of the information co
tent of an object to circumvent the probabilistic ensem
arguments used in defining the Shannon information. Sh
non information has the paradoxical feature that informat
only exists when it can be described probabilistically as o
possible ‘‘message’’ out of an ensemble of messages. O
the message is received, the probability of finding the m
sage is unity and it no longer has an information conte
Kolmogorov’s definition of algorithmic complexity~some-
times referred to as Kolmogorov entropy! does not suffer
from this problem and can be applied to individual obje
such as the structure of phosphofructokinase. No refere
need be made to an ensemble of proteins. Using the algo
mic complexity to estimate the information content of t
protein from a lattice model, one finds that it contains a
proximately 0.5 bit per amino acid@5#.

Shannon entropy and algorithmic complexity pla
complementary roles. Shannon entropy represents the in
mation of the system that is not known and conseque
uses a probabilistic ensemble treatment. Algorithmic co
4545 © 1997 The American Physical Society
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4546 56T. GREGORY DEWEY
plexity gives the known or measured information of the s
tem. It is used for fully determined systems and probabilis
or ensemble arguments never enter. It is a remarkable
tionship, discovered by Zurek@7,8#, that the algorithmic
complexity of a microstate in a statistical ensemble is eq
to the thermodynamic entropy. Zurek has been able to de
statistical-mechanical relationships based on algorith
complexity. Zurek established the relationship

S5K1I , ~1!

whereS is the physical entropy,K is the algorithmic com-
plexity, andI is the Shannon information entropy. Equatio
~1! says that the physical or thermodynamic entropy o
system is composed of two parts, that determined from
known information of the systemK and that determined
from the unknown or probabilistic informationI . For a mac-
roscopic system in which the microstates are unknownK
50 and the entire entropy is due to the Shannon informat
i.e., S5I . This result was established earlier by Jayn
@9,10#. As observations are made on a system, the infor
tion content shifts fromI to K. If the position and momen
tum of all the particles of the system are known thenI 50
andK represents the entire entropy of the system (S5K).

In the present work we extend and generalize previ
results that established the relationship between the algo
mic complexity and the thermodynamic entropy of a prote
In Sec. II it is shown that the algorithmic complexity of
polymer is given by its configurational entropy. Section
adapts this derivation to the specific case of a protein.
results of this section allow estimates of the information c
tent of the structure of native, folded proteins. In Sec.
these results are generalized to a classical many-body
tem. In this section it is shown that statistical-mechanics
lationships can be derived using the Kolmogorov univer
probability. This section is the algorithmic complexity cou
terpart to Jaynes’s information theoretical development
statistical mechanics. It allows a formulation of statistic
mechanics for systems in which a probabilistic approach
not needed. General relationships between the Kolmogo
universal probability and the classical partition function a
established. In Sec. V the results of the previous sections
used to discuss the thermodynamic constraints on infor
tion transfer and dynamics in biological systems. It is se
that the evolution of protein sequence information is go
erned by thermodynamic laws. The paper is summarize
Sec. VI.

II. ALGORITHMIC COMPLEXITY OF A POLYMER

The algorithmic complexity of a polymer is given by th
length of the shortest program required to describe it. Alt
natively, one seeks the most compact signal, in bits, that
describe the object. At first, such definitions would appea
be very impractical as it would be very difficult to prove th
any given program or signal is the shortest. In practice, h
ever, this appears not to be a major constraint. Often v
different and seemingly very inefficient programs will giv
essentially the same algorithmic complexity. This pheno
enon is largely a result of the logarithmic nature of su
problems.

An example of such an inefficient algorithm is the ‘‘lex
-
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cographic’’ trick @6#. This algorithm can be applied to an
problem involving enumerations and will usually give th
same result as more efficient algorithms. For a polymer,
algorithm would be to list all theV possible configurations
of the polymer in lexicographic order, find the appropria
configuration for the microstate of interest, and print out th
configuration. To perform this task, addresses must be g
to each state so as to specify the location in the list of
microstate of interest. This address could be as high asV, so
to execute this program the algorithmic complexity of rep
senting the numberV must be specified. SinceV is such an
enormous number, merely representing it dominates the
formation content. The smallest number of bits required
represent an integer is the logarithm in base 2 of that inte
Thus the algorithmic complexity of a polymerK is given by

K5 ln2 V. ~2!

This is the same result one expects for the thermodyna
entropyS and one has

K5
S

k ln2
, ~3!

where the natural logarithm is used in Eq.~3! andk is Bolt-
zmann’s constant.

This rather strange algorithm shows that the algorithm
complexity or information content of a protein will be it
configurational entropy expressed in bits. In the remainde
this section and in Sec. III this result is established in a m
physical and conceptually appealing manner. A polymer
be described by specifying the location of the monome
units in space. To specify the spatial properties of a polym
one must first divide the space in which it is embedded i
discrete cells. These cells should be made large enoug
encompass a monomeric unit, but small enough to avoid
units. If a cell is occupied with polymer, it is given a 1. If
is occupied with solvent, it received a 0. These cells are t
numbered and the sequence of cell numbers that have
represent a specific microstate of a polymer. The sum of
logarithm of the addresses~or lattice coordinates! is the al-
gorithmic complexity. For some situations, a spatial spec
cation involving internal coordinates is required. For pr
teins, these internal coordinates are theFC angles of the
peptide linkages. These will be dealt with in Sec. III.

To describe a polymer, one then needs a list of addres
The addresses are represented as integers whose va
given by the volume of the latticeV divided by the volume
of the lattice cellDV. The lattice cell volume is given by
DV; l 3, wherel is the bond length between polymeric unit
On average an address can be represented by an in
V/DV and the algorithmic complexity of a polymer ofn
units is

K5n ln2S V

DVD . ~4!

Care must be taken to representV in the most efficient man-
ner @7#. Rather than representing the whole volume of t
lattice, it is more efficient to represent the volume relative
an internal polymer point, such as the center of mass.
spacing between monomers in the polymer is at leastV/n in
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56 4547ALGORITHMIC COMPLEXITY AND THERMODYNAMIC S . . .
such an ‘‘internal’’ coordinate system. For lattices ofN sites,
the total volume isV5Nl3. Substitution into Eq.~4! gives
the contribution from the sites with 1’s in the lattice asK
5n ln2(N/n). If the contribution from theN2n solvent sites
is also considered, an analogous expression is obtained
the total contribution to the complexity is

K5n ln2S N

n D1~N2n!ln2S N

N2nD . ~5!

Equation~5! is recognized as the entropy of mixing of a
ideal gas rather than that of a polymer. The analogy betw
ideal gases and polymers has been made by Flory in
derivation of the configurational entropy of a polymer@11#.
In the above derivation we failed to account for the conn
tivity of the polymer. This correction is readily achieved fo
lowing the methods of Flory@11#. To introduce the connec
tivity of the polymer, the addresses of the monomeric un
are listed in order of their connectivity. A site is chosen
random to initiate the polymer chain. It can fall on any site
the volume and therefore will have an address of or
V/DV;Nl3/ l 35N. The second unit must be in a site adjoi
ing the first one. The volume available to the second uni
the lattice coordination numberq times the cell sizeDV
5 l 3. This address will then be expressed byV/DV;ql3/ l 3

5q. For the third unit, one now has onlyq21 sites that can
be occupied. The available volume in this case isV;(q
21)l 3(12 f ), where f is the expectancy that a given ce
adjacent to a previous one is unoccuppied~cf. @11#!.

Proceeding in this manner, the algorithmic complexity
a polymer is given by

Kpolymer5(
i 51

n

ln2S Vi

l 3 D
5 ln2n1 ln2 q1•••1 ln2~q21!~12 f i ! ~6a!

5 ln2H nq~q21!n22)
i 52

n

~12 f i !J . ~6b!

Following Flory@11#, the site expectancy is approximated

12 f i512 f̄ i5S N2n

N D , ~7!

where f̄ i is the average expectancy. The algorithmic co
plexity for the polymer is now given by

Kpolymer5 ln2~N!1~N2n!ln2S N

N2nD1~n21!ln2S q21

e D .

~8!

Equation~8! is essentially the configurational entropy of
lattice polymer as derived by Flory@11#. It also gives the
same result that would be obtained through the simpler a
rithm based on Eqs.~2! and ~3!.

III. ALGORITHMIC COMPLEXITY OF A PROTEIN

Because proteins are compact polymers, the lattice ca
made the size of the protein and solvent effects are el
nd
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nated. The complexity of a collapsed polymer is then giv
as Kpolymer'n ln2@(q21)/a#, wherea5e. A more sophisti-
cated analysis of the lattice excluded-volume effects@12#
gives

a5S 12
2

qD 2~q/221!

. ~9!

In addition to a more accurate specification of the exclud
volume effect, it is important to specify the details of th
configurational volumeV and the size of the lattice cellsDV
required to specify a protein configuration. Essentially, b
the connectivity and the secondary structural content of
protein are specified.

A protein has peptide orientations distributed over a c
figurational space of volumeV5FC, whereF and C are
the angles associated with the rotation of the planar pep
linkage. To specify a protein’s secondary structure, a pre
termined level of accuracyDV is required. With this accu-
racy, the location in configurational space of each pept
bond rotation can be described by a number whose siz
V/DV. The configurational volumeV is the volume avail-
able to a random coil and is often given the symbolzrc @13#.
It is

zrc5E
0

2pE
0

2p

e2bE~F,C!dF dC, ~10!

whereE(F,C) is the internal energy associated with bo
rotation b is 1/kT. The term zrc replaces the factor (q
21)l 3 in the derivation of Sec. II. The value ofzrc has been
estimated as 4118 deg2 @14#. Proteins are made up of secon
ary structural units that are defined in broad regions ofF-C
space. Typically, these units are taken to be ana helix, a b
sheet, ab turn, and a random coil. To determine the secon
ary structure in this configurational volume, one must kn
F and C to an accuracy of640 deg@15#. Thus a value of
1600 deg2 has been used forDV. In Dill’s notation @13#
DV5zg and z5zrc /zg . The termzg replaces the terml 3

used to specifyDV in Sec. II. A correction is also added t
the value ofz to make it compatible with a cubic lattic
model.

Combining the results for encoding of a protein, the Ko
mogorov entropy of a protein is given by

Kprotein'n ln2S z

aD . ~11!

This is essentially the thermodynamic configurational e
tropy for a protein and the value of this parameter has b
discussed extensively by Dill@13#. For a cubic lattice model
z is estimated at 3.8 anda52.25, givingK<0.77 bits per
amino acid. A more realistic estimate@13# that accounts for
internal interactions between protein side chains givesz/a
51.4 andK<0.49. Thus a program to compute the structu
of a protein that is 100 amino acid long requires less than
binary digits. Also, it is seen that the Kolmogorov comple
ity is significantly less than Shannon information content
the sequence, 2.5 bits per amino acid.
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IV. KOLMOGOROV UNIVERSAL PROBABILITY
AS A PARTITION FUNCTION

Using information theory, statistical mechanics can be
cast not as a physical theory but rather as a theory base
statistical inference@9,10#. The appeal of such a fundament
shift is that certain physical assumptions, assumption not
tified from mechanics, do not have to be made. Howev
statistical mechanics based on information theory still suff
from conceptual problems resulting from the need to extr
probabilistic inferences from ensembles. The ‘‘maximu
entropy’’ method developed by Jaynes is a form of statist
inference that gives the optimal distribution when there
minimal knowledge about the system. But what about s
tems in which we have partial or even complete knowled
How is entropy defined for them? What about individu
objects or individual microstates of a system? How can
tropy be defined for them?

Kolmogorov wrestled with similar problems when consi
ering the information content or complexity of individu
objects outside an ensemble. He defined the algorith
complexity of an object to be the minimal length in bina
code of a computer program required to describe the ob
@6#. This definition of complexity avoids all reference
probability distributions. This abstract construct from the
retical computer science can be directly related to the th
modynamic entropy.

Zurek established that the algorithmic complexity of
‘‘typical’’ microstate of a Boltzmann gas is proportional t
the thermodynamic entropy. He derived the Sackur-Tetr
equation from the algorithmic complexity of a microstate
the system@7#. In the present work we generalize these res
by considering Kolmogorov’s universal probability rath
than the algorithmic complexity. It is shown that for a cla
sical statistical-mechanical system, the Kolmogorov pr
ability can be related to the partition function. This relatio
ship is deeper than the previous treatments because it al
for a consideration of different types of microstates. Only
a microstate of a microcanonical system can the algorith
complexity and thermodynamic entropy be directly related
each other. This formulation of statistical mechanics allo
one to define thermodynamic parameters for objects or
crostates whose parameters are completely determined
need not be related to an ensemble. As such, it is ide
suited for discussing the thermodynamics of embedded, n
equilibrium structures, such as the sequence of a pro
Using the formalism developed in this section, the therm
dynamics of protein sequences is discussed in Sec. V.

The Kolmogorov universal probability of an object is th
probability that a program~in binary form! that describes the
object can be generated by a random sequence of digits~cf.
@6#!. Thus, if a program is of lengthl , the probability of it
being randomly generated is 22 l . From a theoretical com
puter science prospective, the algorithmically most sim
objects have the shortest programs~small l ! and will be the
most probable. The universal probabilityPU is the sum of the
probabilities of all randomly chosen programs that descr
the object and is given by

PU5(
i

22 l i , ~12!
-
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where the sum is over all programs. Since the algorithm
complexity is defined as the shortest program, its contri
tion will often dominate the sum and one frequently has@6#

PU8522K, ~13!

where the prime designates the universal probability wheK
dominates the sum.

The universal probability of a point is phase space is n
considered. All programs to specify this point must provi
the position and momentum coordinates of each of theN
particles. Following Zurek@7#, the location of a given par-
ticle in position-momentum space is specified by cover
the space with a grid of hypercubes with edge sizes ofdp
and dq. The edge sizes are adjusted so that only a sin
particle can fit into the hypercube. If an isotropic phase sp
is assumed, a single edge size can specify each of the res
tive three-dimensional coordinates. Each particle in the s
tem will have a phase-space location specified by the n
bers px /dp, py /dp, pz /dp, x/dq, y/dq, and z/dq. The
length of a program required to specify all the coordinate

l i5(
j 51

N F ln2S qj
~ i !

dq~ i !D 1 ln2S pj
~ i !

dp~ i !D G , ~14!

where i specifies the coordinate system to be used anj
identifies theN particles. The grid size (dqdp) or hypercube
may depend on the specific coordinate system under con
eration. All programs are essentially the same, but some
vide more convenient coordinate systems and conseque
are more efficient.

The universal probability for this program is given by

PU5(
i

22 l i5(
i

H )
j 51

N
dq dp

qj
~ i !pj

~ i !J
5(

i
hN~v1

~ i !v2
~ i !•••vN

~ i !!21, ~15!

where on the right hand sideh is Planck’s constant andv j is
the phase-space volume of thej th particle. Following Tol-
man @16#, we take the ‘‘natural’’ volume unit for the phas
volume to beh, in accord withh;dpdq. The product of
volumes in Eq.~15! is simply the phase-space volume for th
systemV. Even with the most efficient coordinate syste
there can be many programs of the same efficiency. Beca
of the indistinguishability of particles, the variousv j ’s can
be interchanged without changing the basic description
the system. This results inN! programs of the same effi
ciency. Thus Eq.~15! becomes

PU5
N!hN

V
. ~16!

If the system can be represented as a microcanonical
semble then, on average, the phase-space volume wil
given by

^V&5E d„E2H~q,p!…dNq dNp, ~17!
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whereH is the Hamiltonian of the system anddNq dNp is
the volume element for theN spatial andN momentum co-
ordinates. With Eqs.~16! and ~17!, the association betwee
the Kolmogorov probability and the microcanonical partiti
function Q(N,E,V) is made:

^PU
21&5Q~N,E,V!5

1

N!hN E d„E2H~q,p!…dKq dKp.

~18!

This result is somewhat more general than Zurek’s, wh
simply states that̂K&5S.

Additional generalizations are possible by extending t
description to canonical ensembles. Again it is seen that
universal probability is related to the partition function in
form similar to Eq.~18!. To develop this relationship, w
first consider a microcanonical system consisting of a re
voir or heat bath consisting ofM particles and a sample i
thermal contact that consists ofN particles. The reservoir is
such thatM@N. It has a HamiltonianHR and the sample ha
the HamiltonianHS .

Because the reservoir is so large we ultimately would
wish to describe its algorithmic complexity along with th
the sample. Nevertheless, the complexity of the entire sys
is given by

PU~R,S!5H )
j 51

N
dq dp

qjpj
J H )

j 51

M
dq dp

qj8pj8
J

5hN1M~v1v2•••vN!21~v18v28•••vM8 !21, ~19!

where for simplicity only one of the possible permutations
phase space is considered and the primed and unpr
quantities are associated with the reservoir and sample
spectively. Using the integral representation of the pha
space volume, on average one has

^PU~R,S!21&5
1

hN1M E d~E2HR2HS!

3dMq8dMp8dNq dNp, ~20!

where we have assumed that the reservoir and the sa
interact weakly, so that the combined systems can be
scribed by a Hamiltonian that is the sum of the two,HR
1HS . Performing the integration over the reservoir va
ables and representing the reservoir partition function by
entropy function, one obtains

^PU~R,S!21&5
1

hN E eS~E2HS!dNq dNp. ~21!

BecauseHS is a small contribution to the reservoir energ
the entropy can be expanded to first order in a power se
@17#

S~E2HS!5SR~E!2~]S/]HS!HS5SR~E!2bHS .
~22!

The reservoir entropy is a constant and can be moved ou
of the integral in Eq.~21! giving
h
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^Pu~R,S!21&5
eSR~E!

hN E e2bHSdNq dNp. ~23!

Again, because the reservoir is so much larger than
sample, the product of reservoir volumes in Eq.~19! is given
by

H )
j 51

M
dqdp

qj8pj8
J 5eSR~E!. ~24!

Combining these results and again noting that for indis
guishable particlesN! programs of identical length can b
generated by considering all permutations of the partic
one has

^Pu~S!21&5(
i

H )
j 51

N
dqdp

qj
~ i !pj

~ i !J 21

5
1

hNN! E e2bHSdNq dNp. ~25!

Thus the Kolmogorov probability is related to the classic
canonical partition function for this particular system. In th
situation, the algorithmic complexity is now no longer r
lated to the entropy, but rather to the Helmholtz free ene

^K&52
bA

ln 2
. ~26!

The relationship between algorithmic complexity and th
modynamics depends on the specific ensemble under co
eration. The Kolmogorov universal probability, on the oth
hand, is a more general quantity and is related to the ap
priate partition functions. These results can be extende
the grand canonical partition function as well. This is outs
the scope of the current paper.

V. THERMODYNAMICS OF SEQUENCE INFORMATION

Using the previous development, the relationship betw
information content and thermodynamics of protein s
quences and protein structures can be explored. Sequ
information is often construed as being independent of th
modynamics. As will be seen, this is not the case for prot
sequences as they are tied to the thermodynamics of
structure via the shared information. Sequence-structure
lationships are of particular importance in theoretical biolo
because they represent, on a molecular level, the conne
between genotype and phenotype. This relationship is ge
ally not thought to have a thermodynamic component, bu
cases where the structure and stability of the phenotype
determined by thermodynamics, there will be a thermo
namic constraint on the genotype. A consequence of thi
that the evolution of biological information is constrained
the second law of thermodynamics.

The shared Kolmogorov information or algorithmic com
plexity between two entitiesA and B is designated as
K(A:B). It can be related to the joint informationK(A,B)
and to conditional informationK(AuB) andK(BuA) and fol-
lows relationships similar to those for the Shannon inform
tion ~cf. @6#!. This shared information is easily visualize



i

t

r

p

a
h
n

is
or-
as a
on-
The
a-
in-
re,
u-
ith

and
ec.

ce
is is
mic
lar

si-
ov

he
tem

.
f

l-

ken
the

pli-

two
bil-
se-

e

4550 56T. GREGORY DEWEY
diagramatically~see Fig. 1, left!. The regions represent an
abstract space of binary sequences that give programs to
scribe the objectA or B. The joint informationK(A,B) is
given by

K~A,B!5K~A!1K~B!2K~A:B!. ~27!

The joint information also follows a relationship of the form
K(A,B)5K(A)1K(BuA), whereK(BuA) is the conditional
entropy ofB givenA ~it is the area inB that does not overlap
with A!. Using these relationships, the shared information
given by

K~A:B!5K~A!2K~AuB!5K~B!2K~BuA!. ~28!

To determine the shared information between a protein
sequence~seq! and its structure~str!, K(seq:str) must be cal-
culated from conditional entropies. The shared information
given by the counterpart of Eq.~28!:

K~seq:str!5K~str!2K~struseq! ~29a!

5K~seq!2K~sequstr!.
~29b!

K(str) has been estimated by the algorithmic complexity a
described in Sec. III and a value of approximately 0.5 bi
per amino acid is obtained. For the value ofK(seq), one can,
in this instance, employ the close relationship between alg
rithmic complexity and the Shannon entropy~cf. @6#!. Esti-
mates for the Shannon information entropy put it in the rang
of 2.0–2.5 bits per amino acid@4#. The conditional informa-
tion K(sequstr) andK(struseq) is more difficult to estimate.
Most physical evidence points to a single, native structu
per sequence and this givesK(struseq)50. Assuming this to
be true for most sequences, one hasS(str:seq)5S(str). It is
also possible to estimateS(sequstr) from mutagenesis experi-
ments on a single sequence@5# or upon evolutionary changes
in a given sequence@2#. Estimates from these methods are
extremely variable, but typically are about 2.0 bits per amin
acid for K(sequstr). These again recover the relationshi
K(str:seq)'K(str).

These results suggest that all the information in the fin
structure is shared with that in the protein sequence. T
abstract diagram for the information overlap in the protei
folding problem is shown in Fig. 1~right-hand side!. In in-

FIG. 1. Symbolic representation of information.~Left! Diagram
showing the shared informationI (A:B) between signalA with in-
formation contentI (A) and signalB with information contentI (B).
~Right! Shared information entropy between protein sequenc
S(seq) and protein structuresS(str). Since all the information of
the structure is contained in the sequence,S(str)5S(str:seq).
de-
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formation theory terminology, the protein folding process
an interesting communication channel. It receives no inf
mation outside the sequence and therefore appears
noiseless channel. Yet there is much more information c
tained in the sequence than is required by the structure.
biological significance of this additional sequence inform
tion is unclear at this time. Since parts of this sequence
formation could be changed without affecting the structu
the additional information could confer a robustness to m
tation to the system. Such an effect would be in keeping w
experience from mutagenesis studies.

The relationship of Eq.~29! provides a crucial link be-
tween the information content of the protein sequence
the thermodynamics of its structure. With the results of S
III, Eq. ~29! can be rewritten as

^K~seq!&2^K~sequstr!&5S~str!2S~struseq!. ~30!

This shows that the algorithmic complexity of the sequen
can be related to the thermodynamics of the structure. Th
an important relationship because it puts a thermodyna
constraint on the change of information during molecu
evolution.

To see how the information dynamics parallels the phy
cal evolution of the thermodynamic system, the Kolmogor
probabilities for the quantities in Eq.~30! are introduced in
accord with the results of Sec. IV. In this specification, t
protein structural parameters are associated with the sys
energy E and are given a HamiltonianH(q,p). The se-
quence parameters are observablesA(q), which are a func-
tion only of positionq in the protein and not of momentum
A vectora5(a1 ,a2 ,...,aN) is used to specify the identity o
the amino acid at each position in a protein that isN amino
acids long. Within the microcanonical description, the Ko
mogorov probabilities are now given by

^PU~str!21&5eS~E!5E d„E2H~q,p!…dNp dNq,

~31a!

^PU~struseq!21&5eS~Eua!

5E d„a2A~q!…d„E2H~q,p!…dNp dNq,

~31b!

^PU~seq!21&5eK~a!5E d„a2A~q!…dNa, ~31c!

^PU~sequstr!21&5eK~auE!

5E d„a2A~q!…d„E2H~q,p!…dNa,

~31d!

where to simplify the notation factors ofhN and N! have
been dropped and the structural integrals have been ta
only to have the same number of degrees of freedom as
number of amino acids in the protein. None of these sim
fications will have an impact on the following arguments.

An average or consensus sequence can be defined in
ways, one weighted with respect to protein structural sta
ity and the other with respect to the conciseness of the

s
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quence information or sequence complexity. The consen
sequence based on structure is

^a&str5E A~q!d„E2H~q,p!…dNq dNpY
E d„E2H~q,p!…dNq dNp ~32a!

5e2S~E!E aH E d„a2A~q!…

3d„E2H~q,p!…dNq dNpJ dNa ~32b!

5E e2S~E!1S~Eua!a dNa

5E e2S~E:a!a dNa ~32c!

and the consensus sequence based on sequence comple

^a&seq5E a d„a2A~q!…dNaY E d„a2A~q!…dNa

~33a!

5e2K~a!E A~q!H E d„a2A~q!…

3d„E2H~q,p!…dNaJ dNq dNp ~33b!

5E e2K~a!1K~auE!A~q!dNq dNp

5E e2S~E:a!A~q!dNq dNp, ~33c!

where Eq.~30! is used in Eq.~32c!. Equations~32! and~33!
show that the probability densitye2S(E:a) associated with
each type of average is identical and is determined by
mutual entropy. As will be seen, this result is very significa
for the time evolution of the system. Although the sequen
us

ity is

e
t
e

and structural information are different, observables of
systems are determined from the mutual information. Th
sequence and structural information will not evolve indep
dently, but rather will evolve with the mutual information.

The question to be addressed is whether the struct
average^a&str evolves with the same dynamics as the s
quence complexity average^a&seq. If so, the evolution of the
sequence information will mirror the entropic optimizatio
of the structure. To approach this question, the time dep
dence of the following two correlation functions is consi
ered:

^ai~0!aj~ t !&str5E e2S~E:a!ai~0!aj~ t !dNa, ~34!

^ai~0!aj~ t !&seq5E e2S~E:a!Ai~0!Aj~ t !dNp dNq, ~35!

where Eq.~34! shows sequence correlations based on str
tural thermodynamic considerations and Eq.~35! is based on
sequence complexity. Presently, it is shown that Eqs.~34!
and ~35! have identical time dependences. The dynamics
Eqs.~34! and~35! can be revealed using a standard devel
ment of the fluctuation-dissipation theorem. The notation
Garrod @17# is followed where the time-dependent quant
ai(t,a

0) is expanded about the equilibrium pointa0 to first
order in the thermodynamic forcebk(a

0). This gives

ai~ t,a0!5(
k

Fik~ t !bk~a0!, ~36!

where bk(a
0)5]S(Eua0)/]ai . The fluctuation-dissipation

theorem states that@17#

Fik~ t !52^ai~0!ak~ t !&str. ~37!

It is also possible to show that

Fik~ t !52^ai~0!ak~ t !&seq. ~38!

This result shows that the evolution of sequences based
the complexity of the sequence is identical to that based
the thermodynamics of the structure. To obtain Eq.~38!, Eq.
~36! is substituted into Eq.~35!, giving
^ai~0!ak~ t !&seq5E e2S~E:a!Ai~0!Ak~ t !dNp dNq ~39a!

5E e2S~E:a!d„a2A~q!…ai~0!ak~ t !dNa dNp dNq ~39b!

5(
j

F jk~ t !E e2S~E:a!d„a2A~q!…ai~0!b j~a0!dNa dNp dNq ~39c!

5(
j

F jk~ t !E d„a2A~q!…ai~0!
]e2S~E:a!

]aj
dNa dNp dNq ~39d!

5(
j

F jk~ t !eK~a!E d„a2A~q!…ai~0!
]e2K~auE!

]aj
dNa dNp dNq ~39e!
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5(
j

F jk~ t !eK~a!E Ai~0!
]e2K~AuE!

]Aj
dNp dNq ~39f!

52Fik~ t !, ~39g!
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where an integration by parts~cf. @17#! is used after Eq.
~39d!. This result demonstrates, within the approximations
the fluctuation-dissipation theorem, that the sequence c
plexity evolves with the same time course as the struct
stability. Thus the sequence evolution is controlled by
thermodynamics of the structural evolution.

VI. SUMMARY

The sequence of a protein represents the ordering
amino acids along the protein chain. Because of the cova
nature of the bonding, these amino acids do not readily
change in response to environmental changes in chem
potential. Thus the sequence represents a frozen or em
ded structure that does not change during the lifetime of
protein. The nonrandomness of this sequence is a result
variety of factors such as the thermodynamics of prot
folding, the functionality of the protein and, perhaps, gene
f
-

al
e

of
nt
x-
al

ed-
e
f a
n
c

factors associated with the DNA coding. The traditional e
semble formulation of statistical mechanics cannot be u
to discuss the thermodynamics or evolution of such str
tures. Rather a formulation based on algorithmic complex
and Kolmogorov probability is required. Such a formulatio
provides a means to determine the thermodynamics of fix
known objects. This formulation avoids the concept
probabilistic interpretations of microstates in an ensemb
Using this approach, it is seen that the sequence informa
and structural thermodynamics are linked by the shared
mutual information. Because this is a thermodynamic qu
tity, it is seen that protein sequences will evolve under
constraints of the thermodynamics of the structure.
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