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Algorithmic complexity and thermodynamics of sequence-structure relationships in proteins
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The information contained in a protein’s amino acid sequence dictates its three-dimensional structure. In this
situation a frozen or embedded structure, the sequence, contains information that ultimately influences a
thermodynamic entity, the protein structure. The interplay between information and thermodynamics is ex-
plored by considering the algorithmic complexity and Kolmogorov's universal probability of the sequence and
of the structure. It is shown that the algorithmic complexity of a microstate of a polymer is given by its
configurational entropy. Using this result and a lattice protein model, a quantitative estimate of the information
contained in a protein’s structure is made. This is compared to the information content of the sequence. The
information content of the sequence is approximately 2.5 bits per amino acid, while the content in the structure
is approximately 0.5 bits per amino acid. It is estimated that virtually all the information contained in the
protein structure is shared with the sequence. A deeper connection can be made between the shared information
content and the thermodynamic entropy governing the system. Using Kolmogorov’'s universal probability, it is
possible to establish statistical-mechanical relationships for objects without resorting to a probabilistic en-
semble formalism. This allows the thermodynamics of microstates of objects of known configurations to be
determined. Using this formalism, the connection between sequence information and the structural thermody-
namics of a protein can be made. This connection has strong implications for how protein sequences evolve
over evolutionary time and demonstrates that this evolution is constrained by the thermodynamic evolution of
the protein structurd.S1063-651X97)03510-1

PACS numbds): 87.10+€, 87.15.By, 89.706.c

I. INTRODUCTION tion content indicates that sequences are not random and that
some degree of correlation must exist within them. This non-
The fundamental premise of the protein folding problemrandomness is due in part to structural and thermodynamic
is that the information contained in the protein sequenceonstraints of the folded protein.
specifies the three-dimensional structure of the profgin Recently, it was suggested that the information content of
Although this premise is now supported by a wealth of ex-a protein’s structure could be quantified using an information
perimental data, there have been few efforts to quantify theheoretical parameter known as the algorithmic complexity
information content of the protein sequericé [2]). Ideally,  [5]. In previous work, it was shown that the algorithmic
one could quantify the information content of the proteincomplexity of a protein is equal to its configurational ther-
structure as well and determine the amount of informatiormodynamic entropy. The algorithmic complexity of an ob-
shared between sequence and structure. This shared or njget is broadly defined as the length in bits of the shortest
tual information is an implicit component of programs in- description for that objectcf. [6]). Alternatively, it is the
volved with protein structure prediction and protein design.length of the shortest program required to obtain the output.
It is also of interest to ask how these information parameter&olmogorov devised this definition of the information con-
evolve over evolutionary time. Is this evolution random, astent of an object to circumvent the probabilistic ensemble
suggested by Kimura’s neutral theory of evoluti8l, or  arguments used in defining the Shannon information. Shan-
does it follow specific dynamical laws? To approach theseon information has the paradoxical feature that information
questions, the information content of both the protein seonly exists when it can be described probabilistically as one
guence and the protein structure must be determined. possible “message” out of an ensemble of messages. Once
The information content of the sequence can be obtainethe message is received, the probability of finding the mes-
by calculating the Shannon information entropy. The Shansage is unity and it no longer has an information content.
non information entropy of the amino acid sequence revealKolmogorov's definition of algorithmic complexitysome-
the smallest number of binary digitbits) per amino acid times referred to as Kolmogorov entropgioes not suffer
that are needed for the most efficient coding of the sequencéom this problem and can be applied to individual objects
This number can be estimated from the probability distribu-such as the structure of phosphofructokinase. No reference
tion of amino acids in a protein. Previous work in this labo-need be made to an ensemble of proteins. Using the algorith-
ratory suggests that this number is approximately 2—2.5 bitgnic complexity to estimate the information content of the
per amino acid4]. This is a surprisingly small number con- protein from a lattice model, one finds that it contains ap-
sidering that a uniform distribution of 20 amino acids would proximately 0.5 bit per amino acid].
require 4.32 bits per amino acid ¢l20). This low informa- Shannon entropy and algorithmic complexity play
complementary roles. Shannon entropy represents the infor-
mation of the system that is not known and consequently
*FAX: (303 871-2254. Electronic address: gdewey@du.edu uses a probabilistic ensemble treatment. Algorithmic com-
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plexity gives the known or measured information of the sys-cographic” trick [6]. This algorithm can be applied to any
tem. It is used for fully determined systems and probabilisticoroblem involving enumerations and will usually give the
or ensemble arguments never enter. It is a remarkable relaame result as more efficient algorithms. For a polymer, this
tionship, discovered by Zurek7,8], that the algorithmic algorithm would be to list all th&) possible configurations
complexity of a microstate in a statistical ensemble is equabf the polymer in lexicographic order, find the appropriate
to the thermodynamic entropy. Zurek has been able to deriveonfiguration for the microstate of interest, and print out that
statistical-mechanical relationships based on algorithmiconfiguration. To perform this task, addresses must be given

complexity. Zurek established the relationship to each state so as to specify the location in the list of the
microstate of interest. This address could be as high,a0
S=K+1, (D to execute this program the algorithmic complexity of repre-

senting the numbe®) must be specified. Sind@ is such an

lexitv. and! is the Shannon information entr Equati r1enormous number, merely representing it dominates the in-
piexity, a S theé shanno ormation entropy. EQUAlION ¢, a0 content. The smallest number of bits required to

(1) says that the physical or thermodynamic entropy of 6}epresent an integer is the logarithm in base 2 of that integer.

system is composed of two parts, that determined from th N . o
known information of the systenK and that determined Thus the algorithmic complexity of a polyméris given by

from the unknown or probabilistic informatidn For a mac- K=1In, Q. 2
roscopic system in which the microstates are unknok/n,

=0 and the entire entropy is due to the Shannon informationThis is the same result one expects for the thermodynamic
i.e., S=I1. This result was established earlier by JaynesntropyS and one has

[9,10]. As observations are made on a system, the informa-

tion content shifts from to K. If the position and momen- K= 3)

tum of all the particles of the system are known then0 kIn2’

andK represents the entire entropy of the syste$s K). ) _ ) _

In the present work we extend and generalize previoud/here the natural logarithm is used in E8) andk is Bolt-
results that established the relationship between the algoritfmann’s constant. _ o
mic complexity and the thermodynamic entropy of a protein.  This rather strange algorithm shows that the algorithmic
In Sec. Il it is shown that the algorithmic complexity of a complexity or information content of a protein will be its
polymer is given by its configurational entropy. Section I11 configurational entropy expressed in bits. In the remainder of
adapts this derivation to the specific case of a protein. Thehis section and in Sec. lll this res_ult is established in a more
results of this section allow estimates of the information conPhysical and conceptually appealing manner. A polymer can
tent of the structure of native, folded proteins. In Sec. IvPe described by specifying the location of the monomeric
these results are generalized to a classical many-body sydDits in space. To specify the spatial properties of a polymer,
tem. In this section it is shown that statistical-mechanics reon€ must first divide the space in which it is embedded into
lationships can be derived using the Kolmogorov universafiscrete cells. These cells should be made large enough to
probability. This section is the algorithmic complexity coun- €ncOmpass a monomeric unit, but small enough to avoid two
terpart to Jaynes’s information theoretical development of/Nits. If a cell is occupied with polymer, it is given a 1. If it
statistical mechanics. It allows a formulation of statisticaliS occupied with solvent, it received a 0. These cells are then
mechanics for systems in which a probabilistic approach iglumbered and the sequence of cell numbers that have 1's
not needed. General relationships between the KolmogorokgPresent a specific microstate of a polymer. The sum of the
universal probability and the classical partition function arelogarithm of the addressdsr lattice coordinatesis the al-
established. In Sec. V the results of the previous sections a@Prithmic complexity. For some situations, a spatial specifi-
used to discuss the thermodynamic constraints on informa=ation involving internal coordinates is required. For pro-
tion transfer and dynamics in biological systems. It is seer{€inS, these internal coordinates are th¥ angles of the
that the evolution of protein sequence information is gov-Peptide linkages. These will be dealt with in Sec. lIl.
erned by thermodynamic laws. The paper is summarized in To describe a polymer, one then needs a list of addresses.

whereS is the physical entropyK is the algorithmic com-

Sec. VI. The addresses are represented as integers whose value is
given by the volume of the lattice divided by the volume
Il. ALGORITHMIC COMPLEXITY OF A POLYMER of the lattice cellAV. The lattice cell volume is given by

AV~13, wherel is the bond length between polymeric units.
The algorithmic complexity of a polymer is given by the On average an address can be represented by an integer
length of the shortest program required to describe it. Alter\//AV and the algorithmic complexity of a polymer of
natively, one seeks the most compact signal, in bits, that caonits is
describe the object. At first, such definitions would appear to
be very impractical as it would be very difficult to prove that
any given program or signal is the shortest. In practice, how- K=n lnz(ﬁ)' )
ever, this appears not to be a major constraint. Often very
different and seemingly very inefficient programs will give Care must be taken to repres&hin the most efficient man-
essentially the same algorithmic complexity. This phenom-ner [7]. Rather than representing the whole volume of the
enon is largely a result of the logarithmic nature of suchlattice, it is more efficient to represent the volume relative to
problems. an internal polymer point, such as the center of mass. The
An example of such an inefficient algorithm is the “lexi- spacing between monomers in the polymer is at I¥@stin
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such an “internal” coordinate system. For latticeshdbites, nated. The complexity of a collapsed polymer is then given
the total volume isv=NI3. Substitution into Eq(4) gives  as Kpolymer=N Ing[(q—1)/a], wherea=e. A more sophisti-
the contribution from the sites with 1's in the lattice s cated analysis of the lattice excluded-volume effddtg]

=n Iny(N/n). If the contribution from the\ —n solvent sites  gives

is also considered, an analogous expression is obtained and

the total contribution to the complexity is —(a/2-1)

2
1-=
q

a:

€)

n

K=nIn,

N
+(N—n)|n2(N_n). (5)
In addition to a more accurate specification of the excluded-
Equation(5) is recognized as the entropy of mixing of an volume effect, it is important to ;pecify the Qetails of the
ideal gas rather than that of a polymer. The analogy betweefPNfigurational volume/ and the size of the lattice cellsV
ideal gases and polymers has been made by Flory in hiequired to specify a protein configuration. Essentially, both
derivation of the configurational entropy of a polynjad]. the connectivity and the secondary structural content of the
In the above derivation we failed to account for the connecProtein are specified. _ , o
tivity of the polymer. This correction is readily achieved fol- A Protein has peptide orientations distributed over a con-
lowing the methods of Flory11]. To introduce the connec- figurational space of volumg'=®W, where® and ¥ are
tivity of the polymer, the addresses of the monomeric unitst.he angles assoc_|ated Wlth. the rotation of the planar peptide
are listed in order of their connectivity. A site is chosen atlinkage. To specify a protein’s secondary structure, a prede-
random to initiate the polymer chain. It can fall on any site int€rmined level of accuracyV is required. With this accu-
the volume and therefore will have an address of ordef@cy, the location in configurational space of each peptide
V/IAV~NI3/I3=N. The second unit must be in a site adjoin- bond rotation can be described by a number whose size is
ing the first one. The volume available to the second unit i//AV. The configurational volum# is the volume avail-
the lattice coordination numbey times the cell sizeAy ~ able to arandom coil and is often given the symh[13].
=13, This address will then be expressed\WaV~ql3/13  Itis
=(. For the third unit, one now has onfy— 1 sites that can
be occupied. The available volume in this caseVis (q I
3 : . Z = e dd dv,
—1)I°(1—1f ), wheref is the expectancy that a given cell o Jo
adjacent to a previous one is unoccuppiefl [11]).
Proceeding in this manner, the algorithmic complexity of
a polymer is given by

(10

whereE(®, V) is the internal energy associated with bond
rotation B is 1kT. The termz. replaces the factorq(
—1)I% in the derivation of Sec. II. The value af. has been
estimated as 4118 d&pl4]. Proteins are made up of second-
ary structural units that are defined in broad regionde¥
space. Typically, these units are taken to bendmelix, a 8
sheet, g3 turn, and a random coil. To determine the second-
n ary structure in this configurational volume, one must know
_ P ) _ ® and¥ to an accuracy of-40 deg[15]. Thus a value of
—Inz[nq(q b .=H2 1 fi)}' (6b) 1600 ded has been used foAV. In Dill's notation [13]
AV=2z4 and z=z,/z,. The termz, replaces the ternh®
Following Flory[11], the site expectancy is approximated by used to specifiAV in Sec. Il. A correction is also added to
the value ofz to make it compatible with a cubic lattice
1—f-=1—f_-:(N_n) (7~ model
: : N )’ Combining the results for encoding of a protein, the Kol-
_ mogorov entropy of a protein is given by
where f; is the average expectancy. The algorithmic com-
plexity for the polymer is now given by

n v
i
KDonmer= Z:l In2( 3

=In,n+In, g+---+Iny,(q—1)(1—f;) (6a

z

K proteirr=N |”2( al (13)

—Nn

q-1

+(n—=1)Iny| —].

e o . . . .

®) This is essentially the thermodynamic configurational en-

tropy for a protein and the value of this parameter has been
Equation(8) is essentially the configurational entropy of a discussed extensively by D{lL3]. For a cubic lattice model,
lattice polymer as derived by Flofd1]. It also gives the Z is estimated at 3.8 and=2.25, givingK<0.77 bits per
same result that would be obtained through the simpler algc@mino acid. A more realistic estimajté3] that accounts for

N
Kpolymer: Iny(N)+(N— n)an( N

rithm based on Egg2) and(3). internal interactions between protein side chains gix/kes
=1.4 andK<0.49. Thus a program to compute the structure
IIl. ALGORITHMIC COMPLEXITY OF A PROTEIN of a protein that is 100 amino acid long requires less than 49

binary digits. Also, it is seen that the Kolmogorov complex-
Because proteins are compact polymers, the lattice can bty is significantly less than Shannon information content of
made the size of the protein and solvent effects are elimithe sequence, 2.5 bits per amino acid.
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IV. KOLMOGOROV UNIVERSAL PROBABILITY where the sum is over all programs. Since the algorithmic
AS A PARTITION FUNCTION complexity is defined as the shortest program, its contribu-

Using information theory, statistical mechanics can be re:[Ion will often dominate the sum and one frequently pajs

cast not as a physical theory but rather as a theory based on
statistical inferencg€9,10]. The appeal of such a fundamental
th'ft is that certain physmal assumptions, assumption Not Jugz, o the prime designates the universal probability wken
tified from mechanics, do not have to be made. Howeverdominates the sum

statistical mechanics based on information theory still suffers The universal prébability of a point is phase space is now

from cqncgptgal problems resulting from the need to .eXtraCI:onsidered. All programs to specify this point must provide
probabilistic inferences from ensembles. The “maximum- he position and momentum coordinates of each of khe

entropy” method developed by Jaynes is a form of Stat'St'Ci[)articles. Following ZureK7], the location of a given par-

ticle in position-momentum space is specified by covering

P,=27KX, (13

inference that gives the optimal distribution when there i
e e e ool alsca e SPACE Wih T of Pyperubes ih eage Szesl
How is entropy definecﬁ) for them? What Fa)lbout individt?al 'and_&q. The_e_dge sizes are adjusted S0 thaf[ only a single
objects or individual microstates 01; a system? How can enpartlcle can fit into the hypercube. If an isotropic phase space
tropy be defined for them? ' is assumed, a single edge size can specify each of the respec-

. ., tive three-dimensional coordinates. Each patrticle in the sys-
Kolmogorov wrestled with similar problems when consid- il h h | : ified by th
ering the information content or complexity of individual tem will have a phase-space location specified by the num-
bersp,/ép, py/dp, p,/6p, x/6q, y/éq, andz/6q. The

objects _out3|de an _ensemble. He _deflned the algo.mhm'Fength of a program required to specify all the coordinates is
complexity of an object to be the minimal length in binary

code of a computer program required to describe the object N (M M
[6]. This definition of complexity avoids all reference to =3 |n2( 9 +In, P H (14)
probability distributions. This abstract construct from theo- e sq" sp) |’

retical computer science can be directly related to the ther-
modynamic entropy. wherei specifies the coordinate system to be used gnd
Zurek established that the algorithmic complexity of aidentifies theN particles. The grid sizedgép) or hypercube
“typical” microstate of a Boltzmann gas is proportional to may depend on the specific coordinate system under consid-
the thermodynamic entropy. He derived the Sackur-Tetroderation. All programs are essentially the same, but some pro-
equation from the algorithmic complexity of a microstate of vide more convenient coordinate systems and consequently
the systeni7]. In the present work we generalize these resultare more efficient.
by considering Kolmogorov's universal probability rather  The universal probability for this program is given by
than the algorithmic complexity. It is shown that for a clas-
sical statistical-mechanical system, the Kolmogorov prob- O 59 op
ability can be related to the partition function. This relation- Puzz 2 i:E, H R0
ship is deeper than the previous treatments because it allows ' ©oU=L AR
for a consideration of different types of microstates. Only for L .
a microstate of a microcanonical system can the algorithmic =2 NPyt (15
complexity and thermodynamic entropy be directly related to '
e e e A Shere on e right hand ideis Plancksconsant i
crostates whose parameters are completely determined atﬁgle phase-space volume of thth particle. F_ollowmg Tol-
C an[16], we take the “natural” volume unit for the phase

need not be related to an ensemble. As such, it is 'dea”Y/olume to beh. in accord withh~s0sd. The product of
suited for discussing the thermodynamics of embedded, non- ) o Pog. P

oo .volumes in Eq(15) is simply the phase-space volume for the
equilibrium structures, such as the sequence of a protein

Using the formalism developed in this section, the thermo—SyStemQ' Even with the most efficient coordinate system,

dvnamics of protein sequences is discussed in Sec. V there can be many programs of the same efficiency. Because
y b d - S of the indistinguishability of particles, the variows's can
The Kolmogorov universal probability of an object is the . . . : -

. N . be interchanged without changing the basic description of
probability that a progranin binary form) that describes the the svstem. This results iN! proarams of the same effi-
object can be generated by a random sequence of dajits ciency Thu.s Eq(15) becomésp 9
[6]). Thus, if a program is of length, the probability of it Y- q

being randomly generated is 2 From a theoretical com- NI N

puter science prospective, the algorithmically most simple i (16)
. . u Q

objects have the shortest prografemalll) and will be the

most probable. The universal probabilRy, is the sum of the

probabilities of all randomly chosen programs that describél the system can be represented as a microcanonical en-
the object and is given by semble then, on average, the phase-space volume will be

given by

P=S 270, 12 (Q)= f SE—H(q.p))dVq dp, 17
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whereH is the Hamiltonian of the system amtlq dVp is eSr(E)
the volume element for thN spatial andN momentum co- (PR = AN f e PMsdq dp. (23
ordinates. With Eqs(16) and (17), the association between
the KolmogOI‘OV probablllty and the microcanonical partition Again, because the reservoir iS SO much |arger than the
function Q(N,E,V) is made: sample, the product of reservoir volumes in ELp) is given
1 by
P, 1Y=Q(N,E,V =—f S(E—H(q,p))d“q d“p.
(Py)=Q( )=xipn | SE—H(a,p)d"q p18 i o < »
(18 <1 qjpj

This result is somewhat more general than Zurek's, whichcompining these results and again noting that for indistin-
simply states thatK)=S. guishable particledN! programs of identical length can be

Additional generalizations are possible by extending thisyenerated by considering all permutations of the particles,
description to canonical ensembles. Again it is seen that thge nas

universal probability is related to the partition function in a

form similar to Eq.(18). To develop this relationship, we sqsp |~

first consider a microcanonical system consisting of a reser- (P,,(S)‘1>=E [ H W]

voir or heat bath consisting d#l particles and a sample in rol=r g

thermal contact that consists bf particles. The reservoir is 1

such thaM>N. It has a Hamiltoniai r and the sample has = FNI f e AfsgNg dVp. (25)

the HamiltonianH .

. I?]ecalése th_g re_servlow |_shso_ large wle glt|mz;\tely W_Oﬁldhnml'hus the Kolmogorov probability is related to the classical
wish to describe its algorithmic complexity along with that ., ica| partition function for this particular system. In this

the sample. Nevertheless, the complexity of the entire SySte'gituation, the algorithmic complexity is now no longer re-

is given by lated to the entropy, but rather to the Helmholtz free energy
N M
&9 5p” &q 5p] BA
PR,S)= —_— — Ky=———. 26
i [jljl q;P; Jﬂl a; P (K) In2 (26)

=hN*"M(u vy o) " Hoivg o) h (19 The relationship between algorithmic complexity and ther-
modynamics depends on the specific ensemble under consid-
where for simplicity only one of the possible permutations oferation. The Kolmogorov universal probability, on the other
phase space is considered and the primed and unprimefind, is a more general quantity and is related to the appro-
quantities are associated with the reservoir and sample, reriate partition functions. These results can be extended to
spectively. Using the integral representation of the phasethe grand canonical partition function as well. This is outside
space volume, on average one has the scope of the current paper.

1
(PU(R,S)_1)= e f S(E—Hr—Hg) V. THERMODYNAMICS OF SEQUENCE INFORMATION

Using the previous development, the relationship between
xdMq’dMp’dNg dVp, (20 information content and thermodynamics of protein se-
guences and protein structures can be explored. Sequence
where we have assumed that the reservoir and the sampilformation is often construed as being independent of ther-
interact weakly, so that the combined systems can be dewodynamics. As will be seen, this is not the case for protein
scribed by a Hamiltonian that is the sum of the twbg;  sequences as they are tied to the thermodynamics of the
+Hg. Performing the integration over the reservoir vari- structure via the shared information. Sequence-structure re-
ables and representing the reservoir partition function by atationships are of particular importance in theoretical biology
entropy function, one obtains because they represent, on a molecular level, the connection
between genotype and phenotype. This relationship is gener-
1 SE—HJ AN AN ally not thought to have a thermodynamic component, but in
(PR,S)" )= hV f e s'd"q d"p. (2D cases where the structure and stability of the phenotype are
determined by thermodynamics, there will be a thermody-
BecauseH is a small contribution to the reservoir energy, N@mic constraint on the genotype. A consequence of this is

the entropy can be expanded to first order in a power Seriégat the evolution of biOlOgical information is constrained by
[17] the second law of thermodynamics.

The shared Kolmogorov information or algorithmic com-
S(E—Hg)=Sg(E)—(dS/dHs)Hs=Sg(E) — BHs. plexity between two entitiesA and B is designated as
(22 K(A:B). It can be related to the joint informatidf(A,B)
and to conditional informatiok (A|B) andK(B|A) and fol-
The reservoir entropy is a constant and can be moved outsidews relationships similar to those for the Shannon informa-
of the integral in Eq(21) giving tion (cf. [6]). This shared information is easily visualized
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formation theory terminology, the protein folding process is
an interesting communication channel. It receives no infor-
mation outside the sequence and therefore appears as a
noiseless channel. Yet there is much more information con-
tained in the sequence than is required by the structure. The
biological significance of this additional sequence informa-
tion is unclear at this time. Since parts of this sequence in-
formation could be changed without affecting the structure,
the additional information could confer a robustness to mu-
tation to the system. Such an effect would be in keeping with
experience from mutagenesis studies.

The relationship of Eq(29) provides a crucial link be-
tween the information content of the protein sequence and
the thermodynamics of its structure. With the results of Sec.

FIG. 1. Symbolic representation of informatigiheft) Diagram
showing the shared informatidrfA:B) between signah with in-
formation content(A) and signaB with information content(B).
(Right) Shared information entropy between protein sequence
S(seq) and protein structure¥str). Since all the information of )
the structure is contained in the sequer(gtr)= S(str:seq). I, Eq. (29) can be rewritten as

diagramatically(see Fig. 1, left The regions represent an (K(seq)—(K(sedstn) = S(st) — S(striseq. (30

abstract space of binary sequences that give programs to d€his shows that the algorithmic complexity of the sequence
scribe the objecA or B. The joint informationK(A,B) is  can be related to the thermodynamics of the structure. This is
given by an important relationship because it puts a thermodynamic
constraint on the change of information during molecular
K(A,B)=K(A)+K(B)—K(A:B). (270 evolution.
L i i ) To see how the information dynamics parallels the physi-
The joint information also follows a relat_lonshlp of t_h_e form .41 evolution of the thermodynamic system, the Kolmogorov
K(A,B)=K(A)+K(B|A), whereK(B|A) is the conditional  pronapilities for the quantities in EG30) are introduced in
entropy ofB givenA (itis the area irB that does not overlap accord with the results of Sec. IV. In this specification, the
with A). Using these relationships, the shared information isyrotein structural parameters are associated with the system
given by energy E and are given a Hamiltoniak(q,p). The se-
o _ quence parameters are observal#i¢q), which are a func-
K(A:B)=K(A)—K(AIB)=K(B)—K(B|A). (28 o, only of positiong in the protein and not of momentum.
To determine the shared information between a protein’f‘ vectqraz(al,az,...,aN) IS l.Jseq to specn‘_y the |d_ent|_ty of
sequencéseq and its structuréstr), K (seq:str) must be cal- the amino acid at each position in a protein thaligmino

culated from conditional entropies. The shared information i@dds long. Withi_n ;he microcanqnical description, the Kol-
given by the counterpart of E28): mogorov probabilities are now given by

K(seq:sty=K(str)— K(striseq (299 (PM(str)*l)zeS(E):f S(E—H(q,p))d"p dVq,
=K (seq — K(sedstr). (313
(29b) (P, (stiseq ~ty=eSER

K(str) has been estimated by the algorithmic complexity as Neo AN
described in Sec. Il and a value of approximately 0.5 bits = | 8(a—A(q))8(E—H(q,p))d"p dq,
per amino acid is obtained. For the value(iseq), one can,

in this instance, employ the close relationship between algo- (31b)
rithmic complexity and the Shannon entroff. [6]). Esti-

mates for the Shannon information entropy put it in the range (P, (seq Hy=eK@= f S@@—A(q))dVa, (310
of 2.0-2.5 bhits per amino acid]. The conditional informa-

tion K(sedstr) andK(striseq) is more difficult to estimate. (P,(sedstn ~1)=ek@E)

Most physical evidence points to a single, native structure
per sequence and this givEgstiseq)=0. Assuming this to
be true for most sequences, one Béstr:seq)= S(str). It is :f s(a—A(q))S(E—H(q,p))d"a,
also possible to estima®{sedstr) from mutagenesis experi- (310
ments on a single sequenidg or upon evolutionary changes
in a given sequenck]. Estimates from these methods are where to simplify the notation factors &fN and N! have
extremely variable, but typically are about 2.0 bits per amincbeen dropped and the structural integrals have been taken
acid for K(sedstr). These again recover the relationshiponly to have the same number of degrees of freedom as the
K(str:seqyK(str). number of amino acids in the protein. None of these simpli-
These results suggest that all the information in the finafications will have an impact on the following arguments.
structure is shared with that in the protein sequence. The An average or consensus sequence can be defined in two
abstract diagram for the information overlap in the proteinways, one weighted with respect to protein structural stabil-
folding problem is shown in Fig. Tright-hand sidg In in- ity and the other with respect to the conciseness of the se-
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guence information or sequence complexity. The consenswmnd structural information are different, observables of the

sequence based on structure is

<a>su=f A(q) 8(E—H(q,p))dNg de/

f S(E—H(q,p))d"g d"p (323
=e*S<E>f aU s(a—A(q))

x S(E—H(q,p))dVg de]dNa (32b)
:J e*S(E)JrS(E\a)a dNa
=J e~ S(E@g gNg (320

and the consensus sequence based on sequence complexit

<a>seq=fa5(a—A(q))dNa/ f s(a—A(g))da

(33
=eK<a)fA(q)U s(@a—A(a))
X 8(E—H(q,p))dVa;dNg dNp (33b
B
- [ e =@t atp, (330

where Eq.(30) is used in Eq(320). Equations32) and(33)

systems are determined from the mutual information. Thus
sequence and structural information will not evolve indepen-
dently, but rather will evolve with the mutual information.

The question to be addressed is whether the structural
average(a)y, evolves with the same dynamics as the se-
quence complexity average)se. If so, the evolution of the
sequence information will mirror the entropic optimization
of the structure. To approach this question, the time depen-
dence of the following two correlation functions is consid-
ered:

<ai(0)aj(t)>str:f e SEdg,(0)a(t)dVa, (39

<ai(o)aj(t)>seq:f e SEIA (0)A|(t)d"p dNg, (39)

where Eq.(34) shows sequence correlations based on struc-
tural thermodynamic considerations and E2p) is based on

eguence complexity. Presently, it is shown that E§d)

nd (35) have identical time dependences. The dynamics of
Egs.(34) and(35) can be revealed using a standard develop-
ment of the fluctuation-dissipation theorem. The notation of
Garrod[17] is followed where the time-dependent quantity
a;(t,a% is expanded about the equilibrium poiit to first
order in the thermodynamic forgg (a°). This gives

ai<t,a°)=§ Fin(1) Bi(@0), (36)

where B,(a%) =dS(E|a’)/da;. The fluctuation-dissipation
theorem states thal7]

Fi(t)=—(ai(0)ay(t))st- 37
It is also possible to show that
Fi(t) = _<ai(0)ak(t)>seq- (38)

show that the probability densitg™S(E® associated with This result shows that the evolution of sequences based on
each type of average is identical and is determined by théhe complexity of the sequence is identical to that based on
mutual entropy. As will be seen, this result is very significantthe thermodynamics of the structure. To obtain 88), Eq.

for the time evolution of the system. Although the sequencéd36) is substituted into Eq(35), giving

(@i(0)ay(t))seq f e SEDA (0)A(d"p dVg
=J e S 5(a—A(a))a;(0)ax(t)d"a d"p d'q
-3 Ryl [ e SE9sa-A@)a 08 )" ' dV
=2 Fil® J 8(a—A(1))a(0)

=3 F(eK f Sa—A(q)a(0)

(393
(39b
(399
ae—S(EZa)
Ny AN AN
7a, d"ad™p d“q (390
—K(alE)
N N N
o d“a d™p d"q (39

I
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—K(AE)

:Ej: Fik(t)eK(a)J’ A(0) —i— d"p d"g (39f)
j

= —Fi(1), (399

where an integration by partef. [17]) is used after Eq. factors associated with the DNA coding. The traditional en-
(39d). This result demonstrates, within the approximations ofsemble formulation of statistical mechanics cannot be used
the fluctuation-dissipation theorem, that the sequence come discuss the thermodynamics or evolution of such struc-
plexity evolves with the same time course as the structuralures. Rather a formulation based on algorithmic complexity
stability. Thus the sequence evolution is controlled by theand Kolmogorov probability is required. Such a formulation

thermodynamics of the structural evolution. provides a means to determine the thermodynamics of fixed,
known objects. This formulation avoids the concept of
VI. SUMMARY probabilistic interpretations of microstates in an ensemble.

) ) Using this approach, it is seen that the sequence information

The sequence of a protein represents the ordering ofnq structural thermodynamics are linked by the shared or
amino acids along the protein chain. Because of the covalenfytyal information. Because this is a thermodynamic quan-
nature of the bonding, these amino acids do not readily exgty it is seen that protein sequences will evolve under the
change in response to environmental changes in chemicgbnstraints of the thermodynamics of the structure.
potential. Thus the sequence represents a frozen or embed-
ded structure that does not change during the lifetime of the ACKNOWLEDGMENT
protein. The nonrandomness of this sequence is a result of a
variety of factors such as the thermodynamics of protein This work was supported in part by NIH Grant No.
folding, the functionality of the protein and, perhaps, geneticlR15GM55910.
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